together
pixeltable.functions.together
Pixeltable UDFs
that wrap various endpoints from the Together AI API. In order to use them, you must
first pip install together
and configure your Together AI credentials, as described in
the Working with Together AI tutorial.
chat_completions
chat_completions(
messages: Json,
*,
model: String,
max_tokens: Optional[Int] = None,
stop: Optional[Json] = None,
temperature: Optional[Float] = None,
top_p: Optional[Float] = None,
top_k: Optional[Int] = None,
repetition_penalty: Optional[Float] = None,
logprobs: Optional[Int] = None,
echo: Optional[Bool] = None,
n: Optional[Int] = None,
safety_model: Optional[String] = None,
response_format: Optional[Json] = None,
tools: Optional[Json] = None,
tool_choice: Optional[Json] = None
) -> Json
Generate chat completions based on a given prompt using a specified model.
Equivalent to the Together AI chat/completions
API endpoint.
For additional details, see: https://docs.together.ai/reference/chat-completions-1
Requirements:
pip install together
Parameters:
-
messages
(Json
) –A list of messages comprising the conversation so far.
-
model
(String
) –The name of the model to query.
For details on the other parameters, see: https://docs.together.ai/reference/chat-completions-1
Returns:
-
Json
–A dictionary containing the response and other metadata.
Examples:
Add a computed column that applies the model mistralai/Mixtral-8x7B-v0.1
to an existing Pixeltable column tbl.prompt
of the table tbl
:
>>> messages = [{'role': 'user', 'content': tbl.prompt}]
... tbl['response'] = chat_completions(messages, model='mistralai/Mixtral-8x7B-v0.1')
completions
completions(
prompt: String,
*,
model: String,
max_tokens: Optional[Int] = None,
stop: Optional[Json] = None,
temperature: Optional[Float] = None,
top_p: Optional[Float] = None,
top_k: Optional[Int] = None,
repetition_penalty: Optional[Float] = None,
logprobs: Optional[Int] = None,
echo: Optional[Bool] = None,
n: Optional[Int] = None,
safety_model: Optional[String] = None
) -> Json
Generate completions based on a given prompt using a specified model.
Equivalent to the Together AI completions
API endpoint.
For additional details, see: https://docs.together.ai/reference/completions-1
Requirements:
pip install together
Parameters:
-
prompt
(String
) –A string providing context for the model to complete.
-
model
(String
) –The name of the model to query.
For details on the other parameters, see: https://docs.together.ai/reference/completions-1
Returns:
-
Json
–A dictionary containing the response and other metadata.
Examples:
Add a computed column that applies the model mistralai/Mixtral-8x7B-v0.1
to an existing Pixeltable column tbl.prompt
of the table tbl
:
>>> tbl['response'] = completions(tbl.prompt, model='mistralai/Mixtral-8x7B-v0.1')
embeddings
embeddings(input: String, *, model: String) -> Array[(None,), Float]
Query an embedding model for a given string of text.
Equivalent to the Together AI embeddings
API endpoint.
For additional details, see: https://docs.together.ai/reference/embeddings-2
Requirements:
pip install together
Parameters:
-
input
(String
) –A string providing the text for the model to embed.
-
model
(String
) –The name of the embedding model to use.
Returns:
-
Array[(None,), Float]
–An array representing the application of the given embedding to
input
.
Examples:
Add a computed column that applies the model togethercomputer/m2-bert-80M-8k-retrieval
to an existing Pixeltable column tbl.text
of the table tbl
:
>>> tbl['response'] = embeddings(tbl.text, model='togethercomputer/m2-bert-80M-8k-retrieval')
image_generations
image_generations(
prompt: String,
*,
model: String,
steps: Optional[Int] = None,
seed: Optional[Int] = None,
height: Optional[Int] = None,
width: Optional[Int] = None,
negative_prompt: Optional[String] = None
) -> Image
Generate images based on a given prompt using a specified model.
Equivalent to the Together AI images/generations
API endpoint.
For additional details, see: https://docs.together.ai/reference/post_images-generations
Requirements:
pip install together
Parameters:
-
prompt
(String
) –A description of the desired images.
-
model
(String
) –The model to use for image generation.
For details on the other parameters, see: https://docs.together.ai/reference/post_images-generations
Returns:
-
Image
–The generated image.
Examples:
Add a computed column that applies the model stabilityai/stable-diffusion-xl-base-1.0
to an existing Pixeltable column tbl.prompt
of the table tbl
:
>>> tbl['response'] = image_generations(tbl.prompt, model='stabilityai/stable-diffusion-xl-base-1.0')